VEJLEDNING RFG

Tilslutning af produktionsanlæg til transmissionsnettet
Requirements for Generators (RfG)
Revisionsoversigt

<table>
<thead>
<tr>
<th>AFSNIT</th>
<th>ÆNDRING</th>
<th>REV</th>
<th>DATO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle</td>
<td>0</td>
<td>0</td>
<td>10-08-2020</td>
</tr>
</tbody>
</table>
Indhold
1. Indledning .. 5
2. Grundlag ... 5
3. Gyldighed .. 6
4. Teknik .. 7
 4.1 Frekvensstabilitet .. 7
 4.1.1 FSM ... 9
 4.1.2 LFSM-U .. 11
 4.1.3 LFSM-O (frekvensrespons for overfrekvens) ... 13
 4.1.4 ROCOF – Rate of change of frequency .. 14
 4.2 Robusthed .. 15
 4.3 Systemforvaltning ... 20
 4.3.1 Kontrol ... 20
 4.3.2 Beskyttelse ... 20
 4.3.3 Informationsudveksling .. 21
 4.3.4 Generelt ... 21
 4.3.5 Instrumentering ... 21
 4.3.6 Simuleringsmodeller ... 23
 4.3.7 Systemværn ... 23
 4.3.8 Rampingbegrænsninger ... 24
 4.3.9 Jording .. 25
 4.3.10 Synkronisering ... 25
 4.4 Spændingsstabilitet ... 25
 4.4.1 SPG - Synkrongeneratorer ... 27
 4.4.2 PPM – Elproducerende anlæg .. 33
 4.5 Genoprettelse af systemet .. 38
 4.5.1 Genindkobling ... 38
 4.5.2 Start fra dødt net ... 38
 4.5.3 Deltagelse i ø-drift .. 39
 4.5.4 Hurtig gensynkronisering .. 39
 4.6 Spændingskvalitet ... 40
5. Proces for tilslutning ... 41
 5.1 Afklaring af tekniske spørgsmål ... 41
 5.2 Modning af projekt ... 42
 5.3 Byggefase .. 42
 5.4 Spændingssætningstilladelse (EON) .. 42
 5.5 Midlertidig driftstilladelse (ION) ... 43
 5.6 Endelig driftstilladelse (FON) ... 43
 5.7 Begrænset driftstilladelse (LON) ... 43
 5.7.1 Ændring af anlæg .. 43
 5.7.2 Fejl på anlæg .. 44
 5.7.3 Generelt for begrænset driftstilladelse .. 44
6. Simulering og Test ... 44
 6.1 Anlægsejerens ansvar ... 44
 6.2 Energinets opgaver .. 45
 6.3 Fælles bestemmelser om simulering ... 45
 6.4 Fælles bestemmelser om test ... 46
 6.5 Test af synkrone produktionsanlæg ... 46
 6.6 Test af Power Park Moduler (elproducerende anlæg) ... 48

7. Undtagelser ... 52

8. Bilagsliste ... 54

Liste over figurer og tabeller

Figur 1 Begreber vedr. frekvensstabilitet Central Europe ... 7
Figur 2 Begreber vedr. frekvensstabilitet Nordic .. 8
Figur 3 Maksimal effektreduction ved faldende frekvens (forordningens figur 2 med krav tilføjet) 9
Figur 4 Krav til aktivering af frekvensrespons ... 10
Figur 5 Indledende forsinkelse af frekvensrespons ... 11
Figur 6 Forordningens figur 4 ... 12
Figur 7 Krav til LFSM-O .. 14
Figur 8 FRT-krav for synkrone anlæg type D i CE .. 16
Figur 9 FRT-krav for asynkrone anlæg type D i CE .. 17
Figur 10 FRT-krav for synkrone anlæg type D i N ... 18
Figur 11 FRT-krav for asynkrone anlæg type D i N .. 19
Figur 12 Krav til nedregulering af aktiv effekt .. 24
Figur 13 Spændingsstabilitet 110 - 400 kV CE .. 26
Figur 14 Spændingsstabilitet 300 - 400 kV CE .. 26
Figur 15 Spændingsstabilitet 110 - 300 kV N .. 27
Figur 16 Spændingsstabilitet 300 - 400 kV N .. 27
Figur 17 Krav til levering af reaktiv effekt U-Q/Pn for synkrone produktionsanlæg 28
Figur 18 Krav til reaktiv tilleggsstrøm i CE (DK1) .. 34
Figur 19 Krav til reaktiv tilleggsstrøm i N (DK2) .. 34
Figur 20 Krav til levering af reaktiv effekt U-Q/Pn ved maksimaleffekt for PPM 35
Figur 21 Krav til levering af reaktiv effekt P-Q/Pn under maksimaleffekt 36
Figur 22 Proces for nettutslutning .. 41
Figur 23 Proces for ansøgning om undtagelse .. 52

Tabel 1 Minimum driftstider i frekvensintervaller .. 8
Tabel 2 Krav til parametre for aktivering af frekvensrespons ... 10
Tabel 3 Krav til LFSM-U .. 12
Tabel 4 Krav til LFSM-O .. 14
Tabel 5 FRT-krav for synkrone produktionsanlæg type D i CE ... 16
Tabel 6 FRT-krav for asynkrone produktionsanlæg type D i CE ... 17
Tabel 7 FRT-krav for synkrone produktionsanlæg type D i N ... 18
Tabel 8 FRT-krav for asynkrone produktionsanlæg type D i N ... 19
Tabel 9 Krav til spændingsstabilitet ... 25
1. Indledning

Energinet har udarbejdet denne vejledning for at skabe et overblik over bestemmelser for tilslutning af produktionsanlæg til transmissionsnettet. Vejledningen er et nyt tiltag fra Energinets side, og feedback og forbedringsforslag modtages gerne og kan sendes til mkd@energinet.dk. Da vejledningen gælder for anlæg tilsluttet på transmissionsnettet, er det kun krav for D-anlæg\(^1\), der er gengivet. Vejledningen omfatter ikke krav for levering af systemydelser.

I vejledningen er direkte krav fra forordningen skrevet sammen med de krav, Energinet har anmeldt og fået godkendt hos Forsyningstilsynet, mens forordningens beskrivelser angående udarbejdelse og valgmuligheder er fjernet.

Sammen med krav fra forordningen gælder også krav i Teknisk forskrift 3.2.7 om spændingskvalitet, når et produktionsanlæg skal tilsluttes transmissionsnettet. Kravene til spændingskvalitet er ikke gengivet her, da kravene ikke på samme måde er opsplittet i forskellige kilder.

I vejledningen er vist, hvilken artikel i forordningen der danner grundlag for den pågældende del afsnit ved hjælp af en note; se til eksempel denne note\(^2\).

Afsnit 2, Grundlag, beskriver den lovmæssige baggrund for denne vejledning.

Af afsnit 3, Gyldighed, fremgår det, hvilke produktionsanlæg der er omfattet af vejledningen, samt reglernes sammenhæng med den geografiske placering. Disse to afsnit er korte, generelle beskrivelser.

I afsnit 4, Teknik, angives de specifikke tekniske krav til anlæggene. Dette afsnit henvender sig til specialister på området.

Afsnit 5, Proces for tilslutning, beskriver de overordnede trin for nettillslutning.

Afsnit 6, Simulering og Test, beskriver, hvordan man dokumenterer overensstemmelse med de fastsatte krav.

Afsnit 7, Undtagelse, beskriver, hvordan man som anlægsejer søger undtagelse fra forordningens krav.

2. Grundlag

Der er taget udgangspunkt i følgende:

\(^1\) Artikel 5, stk. 2, litra d

\(^2\) Dette note er kun til eksempel
3. Gyldighed

Vejledningen giver en oversigt over krav for nye transmissionstilsluttede produktionsanlæg, samt krav ved ændringer til disse.

Vejledningen gælder **ikke** for anlæg tilsat til distributionsnettet.

Vejledningen gælder også for eksisterende anlæg (anlæg som ikke tidligere har eftervist krav under forordningen), når anlæg ændres. Dette vurderes i følgende processtrin:

- Anlægsejer skal gøre Energinet opmærksom på, at anlægsejer planlægger at gennemføre moderniseringer og/eller udskiftninger af udstyr som kan give ændringer til anlæggets tekniske egenskaber og karakteristika.

- På baggrund af anlægsejers beskrivelse skal Energinet vurdere, om moderniseringer og/eller udskiftninger af udstyr er af et sådant omfang, at det kræver en væsentlig ændring af tilslutningsaftalen og ændringen i anlægget dermed bliver omfattet af kravene i forordningen.

- Energinet vurderer, at følgende tekniske områder kan give anledning til en væsentlig ændring af tilslutningsaftalen:
 - Frekvensstabilitet
 - Robusthed
 - Systemforvaltning
 - Spændingsstabilitet
 - Genoprettelse af systemet
 - Generelle krav

- Såfremt Energinet vurderer, at der er behov for en ændring, skal Energinet i første omgang sende en vejledende vurdering af behovet for ændring af tilslutningsaftalen til Forsyningstilsynet, hvorefter Forsyningstilsynet træffer afgørelse om, hvorvidt tilslutningsaftalen skal ændres.

- Forsyningstilsynet træffer afgørelse i forhold til om forordningen skal følges for det eksisterende anlæg.

Da Danmark ligger i to synkronområder, vil der for en række krav være angivet forskellige værdier. I forordningen og i vejledningen benyttes betegnelserne CE (for Central Europe) og N (for Nordic) for de to synkronområder, hvor DK1 ligger i CE og dækker Jylland/Fyn, medens DK2 ligger i N og dækker Sjælland og Øerne.

I tvivlstilfælde gælder reglerne i forordningen samt de anmeldte krav til Forsyningstilsynet.
4. Teknik

I dette afsnit er der refereret til relevante artikler i forordningen med en note for hver påbegyndt ny artikelreference.

Nogle krav er opdelt på følgende anlægstyper:

- **SPG:** synkrongeneratorer
- **PPM:** Power Park Module (dækker alle anlæg som ikke er synkrongeneratorer)

4.1 Frekvensstabilitet

3 Indenfor begrebet frekvensstabilitet arbejdes der med flere underbegreber:

- **FSM:** Normalområde
- **LFSM-U:** Underfrekvens
- **LFSM-O:** Overfrekvens
- **ROCOF:** Hurtige frekvensændringer

I nedenstående figurer er begreberne vist med virkningsområde.

![CE (DK1): Begreber vedr. frekvensstabilitet Central Europe](image)

3 Artikel 13, stk. 1, litra a, nr. i
Produktionsanlæg skal kunne forblive tilkoblet nettet og opretholde driften inden for de frekvensintervaller og tidsperioder, som er vist i højre søjle på ovenstående figurer og beskrevet i nedenstående tabel 1.

Det betyder minimum 30 minutter i frekvensområdet 48,5 Hz til 49 Hz samt 30 minutter i frekvensområdet 47,5 Hz til 48,5 Hz. Den samlede drift under 49 Hz kan dog ikke overstige 60 minutter.

Produktionsanlægget skal kunne opretholde en konstant produktion (aktiv effekt) uanset ændringer i frekvensen i FSM-området.

Tilladt reduktion i den aktive effekt ved faldende frekvens i forhold til maksimaleffekten er beskrevet som en procentvis reduktion:

<table>
<thead>
<tr>
<th>Frekvensinterval (Hz)</th>
<th>CE:</th>
<th>N:</th>
</tr>
</thead>
<tbody>
<tr>
<td>47,5 – 48,5</td>
<td>30 minutter</td>
<td>30 minutter</td>
</tr>
<tr>
<td>48,5 – 49,0</td>
<td>30 minutter</td>
<td>30 minutter</td>
</tr>
<tr>
<td>49,0 – 51,0</td>
<td>Ubegrænset</td>
<td>Ubegrænset</td>
</tr>
<tr>
<td>51,0 – 51,5</td>
<td>30 minutter</td>
<td>30 minutter</td>
</tr>
</tbody>
</table>

Figur 2 Begreber vedr. frekvensstabilitet Nordic

 Artikel 13, stk. 3
 Artikel 13, stk. 4 og 5
• 6% af P_n per Hz, start ved 49,0 Hz – vist således:

![Diagram](image.png)

Figur 3 Maksimal effektreduktion ved faldende frekvens (forordningens figur 2 med krav tilføjet).

4.1.1 FSM

Krav til frekvensstabilitet

Hvad angår den aktive effekts kontrollerbarhed og reguleringsområdet, skal produktionsanlæggets kontrolsystem kunne justere referencepunktet for aktiv effekt i henhold til instrukser fra Energinet som følger:

SPG: minimum 1% af P_n/minut, desuden 10 minutters reaktionstid til teknologineutralitet hvis nødvendigt.

PPM: minimum 20% af P_n/minut.

Krav til nøjagtighed

Angivelse af setpunkter for aktiv effekt skal kunne ske med en opløsning på 1% af P_n eller bedre.

Frekvensparametrene i reguleringsfunktionerne for aktiv effekt skal kunne indstilles med en opløsning på 10 mHz eller bedre.

Reguleringsstatikkerne skal kunne indstilles med en opløsning på 1% eller bedre af P_n.

For reguleringsfunktioner for aktiv effekt gælder, at en fuldført eller en kontinuerlig regulering maksimalt må afvige med 2% af P_n, hvor fejlen måles som en gennemsnitlig størrelse over en periode på 1 minut (gælder dog ikke for LFSM-O og LFSMU).

6 Artikel 15, stk. 2, litera a
Frekvensmålinger skal udføres med en nøjagtighed på ± 10 mHz eller bedre.

FSM-respons
Produktionsanlægget skal kunne aktivere frekvensresponsen for aktiv effekt med følgende parametre:

<table>
<thead>
<tr>
<th>CE:</th>
<th>N:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval for aktiv effekt (minimumskrav)</td>
<td>1,5 – 10 %</td>
</tr>
<tr>
<td>Ufølsomhed</td>
<td>10 mHz</td>
</tr>
<tr>
<td>Frekvensreguleringsområdet</td>
<td>0 – 200 mHz</td>
</tr>
<tr>
<td>Droop</td>
<td>2 – 12 %</td>
</tr>
</tbody>
</table>

Tabel 2 Krav til parametre for aktivering af frekvensrespons

P₀ anvendes som P_ref for både SPG og PPM.

Figur 4 Krav til aktivering af frekvensrespons

\[\frac{\Delta P}{P_{ref}} = 100 \left(\frac{|\Delta f|}{f_n} \right) \]

\[s_1[\%] = 100 \left(\frac{|\Delta P|}{P_{ref}} \frac{f_n}{|\Delta f|} \right) \]

Dødbåndet for frekvensrespons for frekvensafvigelser samt statikken (negativ hældning) skal kunne genvælges gang på gang.

I tilfælde af ændringer i frekvenstrin skal produktionsanlægget kunne aktivere fuld frekvensrespons for aktiv effekt ved eller over den fuldt optrukne linje i Figur 4.

7 – Artikel 15, stk. 2, litra d
Produktionsanlæggets krævede indledende aktivering af frekvensresponsen t_1 må ikke være unødvigt forsinket og må ikke være længere end to sekunder medmindre der er begrundelse for forsinkelsen.

Figur 5
Indledende forsinkelse af frekvensrespons

P_{max} er den maksimale effekt, som ΔP relaterer til. ΔP er ændringen i den aktive effekt, der leveres af produktionsanlægget. Produktionsanlægget skal levere aktiv effekt ΔP op til punktet ΔP_1 i overensstemmelse med tiderne t_1 og t_2. t_1 er den indledende forsinkelse. t_2 er tiden frem til fuld aktivering. (Forordningens figur 6).

t_2: PGM: 30 sekunder

Produktionsanlægget skal kunne levere fuld frekvensrespons for aktiv effekt i en periode på 15 minutter.

Inden for de 15 minutter må reguleringen af den aktive effekt ikke have nogen negativ indvirkning på produktionsanlæggets frekvensrespons for aktiv effekt.

8Realtidsovervågning af FSM-tilstand er beskrevet i afsnit 4.3.3 om informationsudveksling.

Kommunikationsgrænsefladen for at overvåge driften af frekvensresponsen for aktiv effekt skal være udstyret således, at det i realtid - og på sikker vis - kan overføre signaler fra elværket til Energinets kontrolcenter på anmodning fra kontrolcentret.

4.1.2 9LFSM-U

Anlæggets aktive effekt skal følge den krævede statik, når netfrekvensen er mindre end knækfrekvensen for LFSM-U, uanset om netfrekvensen er stigende eller faldende.

8 Artikel 15, stk. 2, litra g, nr. i og ii
9 Artikel 15, stk. 2, litra c
<table>
<thead>
<tr>
<th></th>
<th>CE:</th>
<th>N:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knækfrekvens</td>
<td>49,8</td>
<td>49,5</td>
</tr>
<tr>
<td>Statikindstillinger:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droop range</td>
<td>2-12 %</td>
<td>2-12 %</td>
</tr>
<tr>
<td>Droop SPG / PPM</td>
<td>5 %</td>
<td>4 %</td>
</tr>
</tbody>
</table>

Tabel 3 Krav til LFSM-U

Nøjagtighed:
- Frekvensmålinger skal udføres med en nøjagtighed på ±10 mHz eller bedre.
- Reguleringsfunktionens følsomhed skal være ± 10 mHz eller bedre.
- Produktionsanlægget skal kunne aktivere en frekvensrespons med en indledende forsinkelse, der er kortere end 2 sekunder.

I LFSM-U-tilstand skal produktionsanlægget kunne øge effekten op til maksimaleffekten.

Den nominelle effekt anvendes som referenceeffekt ($P_{ref} = P_n$).

Den stabile drift af produktionsanlægget i LFSM-U-tilstand skal sikres.

P$_{ref}$ er anlæggets nominelle effekt, som ΔP relaterer til. ΔP er ændringen i den aktive effekt, der leveres af produktionsanlægget. f_n er den nominelle frekvens (50 Hz) i nettet, og Δf er frekvensafvigelsen fra den nominelle effekt i nettet. Ved underfrekvenser mindre end henholdsvis 49,8 Hz for CE (DK1) og 49,5 Hz for N (DK2) skal produktionsanlægget levere en positiv ændring i den aktive effekt i henhold til statikken (negativ hældning) S_2. (Forordningens figur 4).
10**Frekvensgenoprettelseskontrol**
Produktionsanlægget skal have funktionaliteter, som sigter mod at genoprette frekvensen til nominel værdi eller opretholde flowet i udvekslingen af elektricitet mellem systemområder ved den planlagte værdi.

11**Afkobling som følge af underfrekvens**
Elværker, der er bygget til at kunne agere som efterspørgselsenheder, herunder pumpelagringssystemet, skal kunne afkoble deres last i tilfælde af følgende underfrekvens:

- **CE:** 49,0 Hz
- **N:** 48,5 Hz

Kravet gælder ikke for hjælpeforsyninger.

12Syntetisk inerti anvendes ikke.

4.1.3 **LFSM-O (frekvensrespons for overfrekvens)**
Anlæggets aktive effekt skal følge den krævede statik, når netfrekvensen er større end knækfrekvensen, uanset om netfrekvensen er stigende eller faldende. Knækfrekvens og statik ses i tabel 2.

Den nominelle effekt anvendes som referenceeffekt ($P_{ref} = P_n$).

Nøjagtighed:

- Frekvensparametrene i reguleringsfunktionerne for aktiv effekt skal kunne indstilles med en opløsning på 10 mHz eller bedre.
- Reguleringsstatikkene skal kunne indstilles med en opløsning på 1 % eller bedre.
- En fuldført eller en kontinuerlig regulering må maksimalt afvige med < 5 % af P_n, hvor fejlen måles som en gennemsnitlig størrelse over en periode på 1 minut.
- Frekvensmålinger skal udføres med en nøjagtighed på ±10 mHz eller bedre.

Produktionsanlægget skal kunne aktivere en frekvensrespons med en indledende forsinkelse, der er kortere end 2 sekunder.

- Når produktionsanlægget rammer den nedre grænse for regulering, skal det kunne fortsætte driften på dette effektniveau.

10Artikel 15, stk. 2, litra e
11Artikel 15, stk. 2, litra f
12Artikel 21, stk. 2, litra a og b
13Artikel 13, stk. 2, litra a og g
14Artikel 13, stk. 2, litra e
15Artikel 13, stk. 2, litra f
Den nedre grænse for regulering er det effektniveau, hvor anlægget fortsat har stabil drift. Denne grænse fastsættes i forbindelse med aftale om tilslutning.

![Diagram]

Figur 7 Krav til LFSM-O

<table>
<thead>
<tr>
<th>Knækfrekvens</th>
<th>CE:</th>
<th>N:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knækfrekvens</td>
<td>50,2 Hz</td>
<td>50,5 Hz</td>
</tr>
<tr>
<td>Statikindstillinger:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPG</td>
<td>5 %</td>
<td>4 %</td>
</tr>
<tr>
<td>PPM</td>
<td>5 %</td>
<td>4 %</td>
</tr>
</tbody>
</table>

Tabel 4 Krav til LFSM-O

4.1.4 **ROCOF – Rate of change of frequency**

ROCOF er betegnelsen for frekvensændringen som funktion af tiden.

Et produktionsanlæg skal kunne forblive tilkoblet nettet og opretholde driften ved frekvensændringer, som beskrevet nedenfor.

Frekvensændringen, ROCOF, beregnes efter nedenstående eller ækvivalent princip:

\[x_{[\%]} = 100 \times \frac{|\Delta f| - |\Delta f|}{f_{ref}} \frac{f_{ref}}{|\Delta f|} \]

\[x_{[\%]} = 100 \times \frac{|\Delta f| - |\Delta f|}{f_{ref}} \frac{f_{ref}}{|\Delta f|} \]

16 Artikel 13, stk. 2, litra c og d
17 Artikel 13, stk. 1, litra b
Frekvensmålingen anvendt til beregning af frekvensændringen er baseret på en 200 ms måleperiode, hvor middelværdien beregnes.

Frekvensmålingerne skal foregå løbende, så der beregnes en ny værdi for hver 20 ms.

ROCOF [Hz/s] skal beregnes som forskellen mellem den netop udførte middelværdifrekvensberegning og den middelværdifrekvensberegning, der blev foretaget for 20 ms siden.

\[
df/dt = \frac{(middlesværdi 2 - middelværdi 1)}{0.020} \text{ [Hz/s]}
\]

ROCOF skal tåles op til 2,0 Hz/s.

4.2 Robusthed

I tilfælde af effektsvingninger skal produktionsanlægget opholde statistisk stabilitet ved et hvilket som helst driftspunkt i P-Q-diagrammet.

Produktionsanlægget skal kunne forblive tilkoblet nettet og fortsat fungere, uden at effekten reduceres, så længe spænding og frekvens bliver indenfor grænserne i nærværende regler under hensyntagen til reduktion ved underfrekvens og LFSM-U.

Produktionsanlægget skal kunne forblive tilkoblet nettet under enfaset eller trefaset automatisk genindkobling på formaskede netlinjer. Det skal være designet til, uden afbrydelse, at kunne tolerere et momentant spændingsfasespring på op til 20° i nettildelunngspunktet.

Tolerance overfor spændingsfejl

Produktionsanlægget skal kunne forblive tilkoblet nettet og fortsat køre stabilt, efter at elsystemet har været forstyrret af bortkoblede fejl. Denne evne skal være i overensstemmelse med en spænding-tid-profil for fejlsituationer ved tilslutningspunktet.

Spænding-tid-profilen beskriver en nedre grænse for fase-til-fase-spændingernes faktiske kurs på nettets spændningsniveau ved tilslutningspunktet under en symmetrisk fejl som en funktion af tiden før, under og efter fejlen.

De angivne FRT-krav gælder symmetriske såvel som usymmetriske fejltyper. Spændingens synkronkomposant skal indgå ved spændingsevalueringen.

FRT-krav i CE

18 Artikel 15, stk. 4, litra a, b og c
19 Artikel 16, stk. 3
Figur 8 FRT-krav for synkrone anlæg type D i CE

![Graph](image)

Tabel 5 FRT-krav for synkrone produktionsanlæg type D i CE

<table>
<thead>
<tr>
<th>Spændingsparametre (pu)</th>
<th>Tidsparameter [sekunder]</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{ref}:</td>
<td>0</td>
</tr>
<tr>
<td>U_{clear}:</td>
<td>0,6</td>
</tr>
<tr>
<td>U_{rec1}:</td>
<td>0,6</td>
</tr>
<tr>
<td>U_{rec2}:</td>
<td>0,85</td>
</tr>
</tbody>
</table>
Figur 9 FRT-krav for asynchrone anlæg type D i CE

<table>
<thead>
<tr>
<th>Spaændingsparametre (pu)</th>
<th>Tidsparametre [sekunder]</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{ref}</td>
<td>0</td>
</tr>
<tr>
<td>U_{clear}</td>
<td>0</td>
</tr>
<tr>
<td>U_{rec_1}</td>
<td>0</td>
</tr>
<tr>
<td>U_{rec_2}</td>
<td>0,85</td>
</tr>
</tbody>
</table>

Tabel 6 FRT-krav for asynchrone produktionsanlæg type D i CE
Figur 10 FRT-krav for synkrone anlæg type D i N

Tabel 7 FRT-krav for synkrone produktionsanlæg type D i N
Publikationen Kortslutningsberegninger – Metode, jordingspraksis og forudsætninger fastlægger metoden for beregning af kortslutningseffekt samt beregner konditioner i kendte tilslutningspunkter.

Anlægsejer får nedenstående start- og slutkonditioner uddelveret ved henvendelse; disse skal benyttes i beregninger for eftervisning af tolerance overfor spændingsfejl ved tilslutningspunktet:

- Minimumseffekten for kortslutning ved hvert tilslutningspunkt før fejlen udtrykt i MVA.
- Produktionsanlæggets driftspunkt før fejlen, udtrykt i aktiv og reaktiv effekt ved tilslutningspunktet, samt spændingen ved tilslutningspunktet. Anlægskonditioner = anlægstolerancen er specificeret ved P_n og Q_{min}.
- Minimumseffekten for kortslutning ved hvert tilslutningspunkt efter fejlen udtrykt i MVA.

Genindkobling
Anlægsejer skal sikre produktionsanlægget mod mekaniske og elektriske følgevirkninger i forbindelse med mulig genindkobling efter symmetriske såvel som asymmetriske fejl i transmissionssystemet.
Foranstaltningerne i forbindelse med dette må ikke kompromittere produktionsanlæggets øvrige specificerede egenskaber.

SPG
20 Anlægsegenskaber for robusthed må ikke forsinkes eller begrænses ved et specifikt design.

21 Energinet og anlægsejeren kan indgå en aftale om produktionsanlæggets tekniske kapacitet med henblik på at understøtte vinkelstabiliteten i tilfælde af fejl.

PPM
22 For genoprettelse af den aktive effekt, som det elproducerende anlæg skal kunne producere efter rettelse af en fejl, gælder det, at anlægget efter et indsvingningsforløb skal lever normal production senest 5 sekunder efter, at driftsforholdene i nettelslutsningspunktet er tilbage i området kontinuerligt drift. Effektreguleringen skal ske med en gradient på mindst 20 % af anlæggets nominelle effekt.

4.3 **Systemforvaltning**

4.3.1 **Kontrol**
23 Generelle krav til kontrolordninger og indstillinger
Ordninger og indstillinger for produktionsanlæggets forskellige kontrolanordninger, der er nødvendige for transmissionssystemets stabilitet og nødforanstaltninger, koordineres og aftales med Energinet.

Systemværn
I forbindelse med fastlæggelse af POC oplyser Energinet, om der er krav til etablering af et systemværn.

Absolut effektbegrensninger
Absolut effektbegrensninger bruges til at beskytte det kollektive elforsyningsnet mod overbelastning i kritiske situationer.

4.3.2 **Beskyttelse**
24 Elektriske beskyttelsesmekanismer og indstillinger:

Energinet anvender:

- Linjebeskyttelse
- Transformerbeskyttelse
- Reaktorbeskyttelse
- Hjælpekrafttransformerbeskyttelse
- Samleskinnebeskyttelse

Anlægsejer skal sørge for at:

20 Artikel 17, stk. 3
21 Artikel 19, stk. 3
22 Artikel 20, stk. 3, litra a og b
23 Artikel 14, stk. 5, litra a, nr. i
24 Artikel 14, stk. 5, litra b, nr. i
• Anlægget sikres mod skader fra fejl og hændelser i nettet.
• Anlægget sikres mod interne kortslutninger.
• Anlægget sikres mod udkobling i ukritiske situationer.

Alle relevante indstillinger specificeres med udgangspunkt i relevant net- og anlægsanalyse. Indstillingerne indføres i driftsaftalen.

Det kollektive elforsyningssystem sikres i videst muligt omfang mod uønskede påvirkninger fra anlægget.

Anlægget skal kunne håndtere de opstillede FRT-krav, hvor Energinet sikrer, at fejl m.m. udkobles iht. disse.

4.3.3 Informationsudveksling
Produktionsanlæg skal kunne udveksle informationer med Energinet i realtid, eller periodisk med tidsstempling, med følgende nøjagtighed:

• Maksimal opdateringstid af funktionsstatus (aktiveret/deaktiveret) er 10 ms.
• Maksimal opdateringstid af parameterværdi er 1 sekund.
• Maksimal opdateringsværdi af måleværdier er 1 sekund.

Indholdet af informationsudvekslingen og øvrige krav til udvekslingen er oplistet i Bilag 1A (signallisten) til kravene.

Såfremt man ønsker at levere systemydelser (fx. FCR, RR, FRR) fra et anlæg, vil der være yderligere krav til signaler ud over kravene i signallisten (se reglerne for systemydelser). Samtidig kan den balanceansvarlige have yderligere krav om signaler fra produktionsanlægget.

4.3.4 Generelt
26 Krav til systemforvaltning
Hvad angår tab af vinkelstabilitet eller tab af kontrol, skal et produktionsanlæg automatisk kunne afkoble fra nettet med henblik på at bevare systemsikkerheden eller forebygge skader på produktionsanlægget.

4.3.5 Instrumentering
Elværker skal være udstyret med en funktion, der registrerer fejl og muliggør dynamisk systemadfærdsanalyse. Denne funktion skal registrere følgende parametre:

• spænding
• aktiv effekt
• reaktiv effekt

25 Artikel 14, stk. 5, litra d
26 Artikel 15, stk. 6, litra a og b
For anlæg, der leverer systemydelser, skal der installeres en PMU-enhed til verificering af den specificerede ydelse, herunder produktionsanlæggets dynamiske respons.

Instandstillingerne for fejlregistreringsudstyr (herunder udløsningskriterier og samplingshastighed) er beskrevet nedenfor.

Logning skal realiseres via et elektronisk udstyr, der kan opsættes til som minimum at logge relevante hændelser for nedennævnte signaler i nettilslutningspunktet ved fejl i det kollektive elforsyningsnet.

Anlægsejer installerer i nettilslutningspunktet et logningsudstyr (fejlskriver), der som minimum registrerer:

- Spænding for hver fase for anlægget
- Strøm for hver fase for anlægget
- Aktiv effekt for anlægget (kan være beregnede størrelser)
- Reaktiv effekt for anlægget (kan være beregnede størrelser)
- Frekvens for anlægget
- Frekvensafvigelser
- Hastighedsafvigelser (synkrongenerator)
- Aktivering af interne beskyttelsesfunktioner

Specifikke krav til målinger beskrives i nettilslutningsaftalen.

Logning skal udføres som sammenhængende tidsserier af måleværdier fra 10 sekunder før hændelse til 60 sekunder efter hændelsestidspunktet.

Minimum samplefrekvens for alle fejllogninger skal være 1 kHz.

De specifikke opsætninger af hændelsesbaseret logning aftales med den systemansvarlige virksomhed ved opstart af anlægget.

Alle målinger og data, der skal opsamles iht. Forordnings krav 5.8.10, Informationsudveksling – Produktion og forbrug, skal logges med en tidsstempling og en nøjagtighed, som sikrer, at disse kan korreleres med hinanden og med tilsvarende registreringer i det kollektive elforsyningsnet.

Logninger skal arkiveres i minimum tre måneder fra fejlsituationen, dog maksimalt op til 100 hændelser.

Elforsyningsvirksomheden og den systemansvarlige virksomhed skal på forlangende have adgang til loggede og relevante registrerede informationer.

Triggersignaler fra ovenstående benyttes til dynamisk systemadfærdsövervågning, der omfatter en svingningsudløser, som opfanger dårligt dæmpede svingninger.

Energinet skal gives adgang til informationerne i filformat:

4.3.6 Simuleringsmodeller

27Krav til simuleringsmodeller fremgår af Bilag 1.B til kravene.

4.3.7 Systemværn

28

For SPG gælder

El-systemets behov for systemværn og implementering af dette på den enkelte synkrongenerator afdækkes, når POC er tildelt. De specifikke forhold beskrives i tilslutningsaftalen.

For PPM gælder

Et anlæg skal være udstyret med et systemværn, som er en nødreguleringsfunktion, der på baggrund af en nedreguleringssordre meget hurtigt skal kunne regulere den aktive effekt leveret fra et produktionsanlæg til et eller flere foruddefinerede setpunkter. Setpunkterne fastlægges af elforsyningsvirksomheden ved idrætsættelsen.

Anlægget skal have mulighed for minimum fem forskellige konfigurerbare reguleringstrin. Som standardværdier anbefales følgende reguleringstrin:

1. Til 70 % af mærkeeffekt
2. Til 50 % af mærkeeffekt
3. Til 40 % af mærkeeffekt
4. Til 25 % af mærkeeffekt
5. Til 0 % af mærkeeffekt, dvs. anlægget er stoppet.

Reguleringen skal påbegyndes inden for 1 sekund og skal være fuldført indenfor 10 sekunder fra modtagelse af ordre om nedregulering.

I det tilfælde, at der til systemværnet beordres en opregulering, f.eks. fra trin 4 (25 %) til 3 (40 %), accepteres det, at designmæssige grænser for anlæggets generatorer eller øvrige anlægsenheder kan give en forøget tid for fuldførelse af ordren.

Automatisk nedreguleringsfunktion af aktiv effekt ved stopvindhastighed

For produktionsanlæg, hvor primær energi er vind, skal anlægget kunne nedregulere den aktive effekt produktion, når der optræder høje vindhastigheder, inden vindmøllernes indbyggede beskyttelsesfunktion ved høje vindhastigheder (stopvindhastighed) aktiveres.

Hvis et produktionsanlæg har vind som primær energi, skal anlægget kunne regulere den aktive effekt til en vilkårlig værdi i intervallet fra 100 % til 10 % af Pn.

Reguleringsfunktionen skal kunne aktiveres/deaktiveres via ordrer.

27 Artikel 15, stk. 6, litra c, nr. i
28 Artikel 15, stk. 6, litra d
Nedregulering kan foretages som en kontinuert regulering eller en diskret regulering.

Diskret regulering må maksimalt have et trin om fælles areal på 25 % af mærkeeffekten inden for det skraverede område vist i nedenstående figur.

![Figur 12 Krav til nedregulering af aktiv effekt](image)

Nedreguleringsbåndet aftales med Energinet ved idriftsættelse af produktionsanlægget. Bredden af nedreguleringsbåndet kan afhænge af de lokale vindforhold.

Den automatiske nedreguleringsfunktion præciseres som minimum ved:

- Vindhastighed - aktivering nedregulering [m/s]
- Vindhastighed - 10 % af Pn [m/s]
- Vindhastighed – cutout [m/s]

4.3.8 Rampingbegrænsninger

29Minimums- og maksimumsgrænser for ændringer i aktiv effekt (rampingbegrænsninger):

<table>
<thead>
<tr>
<th></th>
<th>Op: Min: 1 % af Pn/min</th>
<th>Op: Max: 20 % af Pn dog højest 60 MW/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ned</td>
<td>Min: 1 % af Pn/min</td>
<td>Max: 20 % af Pn dog højest 60 MW/min</td>
</tr>
</tbody>
</table>

Kravene til minimum- og maksimumgradienter for ændring af aktiv effekt er kun gældende, hvis ikke andre betingelser/regler fastsætter respektive gradienter, herunder også systemydelser, energimarked etc.

29 Artikl 15, stk. 6, litra e
4.3.9 Jording

30For ordninger om jordforbindelse i nulpunktet på netsiden af transformere til optransformering gælder, at stjernepunktet skal være isoleret og ført ud således, at det kan direkte jordes eller jordes gennem en reaktans.

Som udgangspunktet jordes sekundærsiden af maskintransformeren ikke.

Øvrige krav er defineret i netdimensioneringskriterier for net over 100 kV.

4.3.10 Synkronisering

31Når produktionsanlægget startes op, må synkronisering først udføres, når Energinet har givet tilladelse med en ION.

Produktionsanlægget skal være udstyret med de nødvendige synkroniseringssystemer, og synkronisering af produktionsanlægget skal være mulig ved frekvenser, der ligger indenfor frekvensintervallet 47,5 Hz til 51,5 Hz.

Energinet og anlægsejeren skal blive enige om indstillingerne for synkroniseringssystemerne, inden produktionsanlægget tages i brug. Denne aftale skal dække:

- Spænding
- Frekvens
- Interval for fasevinkel
- Faserækkefølge
- Spændings- og frekvensafvigelse

4.4 Spændingsstabilitet

32Produktionsanlægget skal, uden at det berører reglerne for robusthed, kunne forblive i drift i følgende spændingsintervaller og som vist i følgende figurer:

<table>
<thead>
<tr>
<th></th>
<th>110-300 kV</th>
<th>300-400 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE:</td>
<td>0,85 – 0,90 pu/60 min</td>
<td>0,85 – 0,90 pu/60 min</td>
</tr>
<tr>
<td></td>
<td>1,118 – 1,15 pu/60 min</td>
<td>1,05 – 1,1 pu/60 min</td>
</tr>
<tr>
<td>N:</td>
<td>1,05 – 1,1 pu/60 min</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 9 Krav til spændingsstabilitet

30 Artikel 15, stk. 6, litra f
31 Artikel 16, stk. 4
32 Artikel 16, stk. 2, litra a, nr. i
Figur 13 Spændingsstabilitet 110 - 400 kV CE

Figur 14 Spændingsstabilitet 300 - 400 kV CE
4.4.1 **SPG - Synkrongeneratorer**

Det påhviler anlægsejer at kompensere for anlægsinfrastrukturens reaktive effekt i situationer, hvor anlægget er udkoblet eller ikke producerer aktiv effekt.

33 Artikel 18, stk. 2, litra a
Reaktiv effekt ved maksimaleffekt

U-Q/P_{max}-profil giver rammerne for, hvor det synkrone produktionsanlæg skal kunne levere reaktiv effekt ved maksimaleffekten.

![Diagram](image)

Figur 17 Krav til levering af reaktiv effekt U-Q/Pn for synkrone produktionsanlæg

Kravet om levering af reaktiv effekt gælder ved tilslutningspunktet.

Det synkrone produktionsanlæg skal kunne bevæge sig til et hvilket som helst driftspunkt i U-Q/P_{max}-profilen indenfor et passende tidsrum for at nå de værdier, som den relevante systemoperator anmoder om.

Reaktiv effekt

Et synkront produktionsanlæg skal kunne levere reaktiv effekt, når det kører ved en aktiv effekt under maksimaleffekten (P < P_{max}). Det skal kunne fungere ved ethvert tænkeligt driftspunkt i anlæggets generators P-Q-diagram, som minimum ned til det laveste stabile driftsniveau. Selv ved reduceret aktiv effekt skal forsyningen af reaktiv effekt ved tilslutningspunktet svare fuldt ud til anlæggets generators P-Q-diagram, under hensyntagen til hjælpestrømforsyning og i givet fald tab af aktiv og reaktiv effekt i transformeren til optransformering.

Spændingsregulering

Parametre og indstillinger af komponenter til spændingsregulering aftales og defineres med udgangspunkt i en specifik analyse.

34 Artikel 18, stk. 2, litra b
35 Artikel 18, stk. 2, litra c
36 Artikel 19, stk. 2, litra a
Anlægskomponenter

I følgende afsnit specificeres generelle stabilitetskrav til generator og maskintransformer for et anlæg.

Maskintransformer/nettransformer

Den maksimalt tilladelige størrelse af maskintransformerens/nettransformerens kortslutningsreaktans fastsattes i samarbejde med Energinet på baggrund af anlægsejers anlægsdesignstudier og stabilitetsanalyser. Den tilladelige værdi skal fremgå af nett slutningsaftalen for anlægget.

Hvor der anvendes viklingskobler på maskintransformer/nettransformer, kan det aftales med Energinet, at viklingskobleren må anvendes til opfyldelse af krav til reaktive reguleringsegenskaber. Hvis aftale indgås, skal det fremgå af nett slutningsaftalen for anlægget.

Hvis der anvendes viklingskobler på maskintransformer/nettransformer, er anlægsejer ansvarlig for den rette koordination mellem anlæggets reaktive regulatoringsfunktioner og viklingskoblerreguleringen.

Generator

For et anlæg i kategori D fastsættes krav til kortslutningsforhold og transient reaktans i samarbejde med den systemansvarlige virksomhed på baggrund af anlægsejers anlægsdesignstudier og stabilitetsanalyser. De tilladelige værdier skal fremgå af nett slutningsaftalen for anlægget.

Magnetiseringssystem

SPG skal være udstyret med et kontinuert fungerende automatisk magnetiseringssystem. Formålet er at sikre stabil drift af anlægget, samt give mulighed for at bidrage til regulering af spænding og/eller den reaktive effektbalance i det kollektive elforsyningsnet.

I tilfælde af netforstyrrelser der medfører spændingsreduktion, skal generatoren i mindst 10 sekunder kunne overmagnetiseres med 1,6 gange magnetiseringsstrøm og -spænding ved nominel effekt og tan(ϕ) = 0,4 i POC og nominel driftsspænding. Hvis overmagnetiseringssegenskaben afhænger af spændingen i POC, skal den nævnte egenskab være tilgængelig ved reduceret netspænding i POC ned til 0,6 pu.

Generatorens overmagnetiseringsbeskyttelse og anden beskyttelse skal konstrueres og indstilles, så generatorens evne til midlertidig overbelastning kan udnyttes uden at overskride generatorens termiske grænser.

Magnetiseringssystemets begrænsrerfunktioner skal være selektive med anlæggets beskyttelsesfunktioner, og derved muliggøre kortvarig udnyttelse af overbelastningsegenskaber uden udkobling af anlægget.

Magnetiseringssystemets tidsrespons (målt på generatorklemmerne) under tomgang (generatoren er frakoblet nettet og drevet ved nominel omløbshastighed) ved en momentan 10 % ændring af referencespændingen skal være ikke-oscillerende, og have en stigetid ("rise-time"), som defineret i DS/EN 60034-16-3, på maksimalt 0,3 sekund for et statisk magnetiseringssystem. For et roterende magnetiseringsystem ("rotating exciter") tillades et tidsrespons på maksimalt
0,5 sekund ved en positiv 10 % ændring af referencespændingen og tilsvarende maksimalt 0,8 sekund ved en negativ 10 % ændring af referencespændingen.

Magnetiseringsystemets oversvømmelse ("overshoot") målt på generatorklemmerne, som defineret i DS/EN 60034-16-3, ved en momentan 10 % ændring i referencespændingen må maksimalt være 15 % af ændringen.

Verifikationskrav magnetiseringsystem

Verifikation af ovenstående funktionskrav til magnetiseringsudstyret skal vedlægges som dokumentation. Udførte simuleringer, relevante målinger fra idriftsættelsestest, funktionsbeskrivelser samt "as-built" indstillingsværdier skal vedlagges som del af den samlede anlægsdokumentation.

Koordinering mellem begrænsarfunktioner og beskyttelsesfunktioner dokumenteres ved et P/Q-diagram for hhv. statisk og dynamisk karakteristik, indeholdende funktionstider og aktiveringsniveauer.

Simulering, analyse og idriftsættelsestest skal anvendes til at dokumentere, at magnetiseringsystemet har tilfredsstilende dynamiske egenskaber.

De udførte simuleringer skal omfatte nedenstående testsценарии:

1. RMS-simulering af spændingsdyk i henhold til nedstående funktion, hvor maskinens før fejl driftspunkt er defineret ved UPOC = 1 pu, P = 1 pu, QPOC = 0,4 pu:
 a. Upoc(t) = \begin{cases} 1 \text{ pu hvor } t < 0 \text{ s} \\ 0,6 \text{ pu hvor } t > 0 \text{ s} \end{cases}
2. RMS-simulering af stepresponstest ved en momentan +/- 10 % ændring af referencespændingen, hvor maskinen drives i tomgang og ved nominel omløbsfart.

Den udførte idriftsættelse skal indeholde nedenstående tests:

1. Stepresponstest ved en momentan +/- 10 % ændring af referencespændingen, hvor maskinen drives i tomgang og ved nominel omløbsfart.
2. Test af selektivitet mellem undermagnetiseringsbeskyttelse og undermagnetiseringsbegrænsere. Dette udføres ved:
 a. Stepresponstest, hvor maskinen forsøges tvunget i et undermagnetiseret arbejdspunkt, som ligger uden for det tilladelse arbejdsløjfe for undermagnetiseringsbegrænsere.
 b. Oprampning af aktiv effekt, fra Pmin til Pn, hvor maskinen, inden påbegyndelse af test, lægges i et fuldt undermagnetiseret arbejdspunkt.
3. Test af selektivitet mellem overmagnetiseringsbeskyttelse og overmagnetiseringsbegrænsere. Dette udføres ved:
 a. Stepresponstest, hvor maskinen forsøges tvunget i et overmagnetiseret arbejdspunkt, som ligger uden for det tilladelse arbejdsløjfe for overmagnetiseringsbegrænsere.
 b. Oprampning af aktiv effekt, fra Pmin til Pn, hvor maskinen, inden påbegyndelse af test, lægges i et fuldt overmagnetiseret arbejdspunkt.
4. Test af statorstrømsbegrænsers performance. Dette udføres ved:
 a. Stepresponstest, hvor maskinen forsøges tvunget i et arbejdspunkt, som ligger uden for den tilladelse størrewærdi for statorstrømsbegrænsere. Testen udføres ved reducerede indstillingen.
5. Test af V/Hz-begrænsers performance. Dette udføres ved:

b. Ændring af omløbshastighed, hvor maskinen forsøges tvunget i et arbejdspunkt, som ligger uden for det tilladelige forhold mellem spænding og frekvens for V/Hz-begrænsen. Testen udføres ved reducerede indstillinger og hvor maskinen drives i tomgang og ved nominel omløbshastighed før ændring af omløbshastighed.

PSS-funktion

PSS-funktionen skal anvende input fra både rotorhastighed/netfrekvens og aktiv effekt (dual input) til at udlede stabilitetssignalet, hvor en dæmpetilsats af typen IEEE PSS2B, jf. IEEE 421.5, er normgivende.

Justering af PSS-funktionen skal være således, at der opnås en positiv dæmpning i frekvensområdet 0,2 til 0,7 Hz.

Fasen af det tilførte dæmpningssignal, som produceres af PSS-funktionen, skal i frekvensområdet 0,2 til 2 Hz være i fase med hastighedsændringerne for generatorens rotor. Afvigelser på op til -30 grader (underkompenseret) kan accepteres.

Dæmpning af anlæggets effektoscillationer (eksponentielt aftagende funktion) skal ved alle arbejdspunkter, og ved enhver forstyrrelse med PSS-funktionen aktiveret, være hurtigere end 1 sekund.

Anlæggets naturlige dæmpning af "local mode" effektoscillationer må ikke påvirkes negativt af PSS-funktionen.

Justeringen af PSS-funktionen skal være således, at ændringer af anlæggets arbejdspunkt (aktiv effekt) under normal drift, eller ved en fejl i fx turbineregulator, kedelanlæg, fødevandsanlæg eller andre hjælpereaktor, ikke må medføre, at spændingen på højspændingssiden af anlæggets maskintransformer ændres mere end 1 %.

PSS-udgangssignalet skal begrænses, således at aktivering af PSS-funktionen ikke medfører en ændring af generatortændringen større end +/- 5 % af generatoren nominelle spænding. Det er tilladt, at grænsene reduceres automatisk og dynamisk af spændingsregulatoren, fx ved aktivering af magnetiseringsystemets begrænsing.

Verifikationskrav PSS-funktion

Overholdelse af ovenstående funktionskrav til PSS-funktionen skal vedlægges som dokumentation. Udførte simuleringer, relevante målinger fra idriftsættelsestest, funktionsbeskrivelser samt "as-built" indstillingsværdier skal vedlægges som en del af den samlede anlægsdokumentation.

Simulering, analyse og idriftsættelsestest skal anvendes til at dokumentere, at de anvendte indstillingseværder giver PSS-funktionen og det samlede magnetiseringsystem tilfredsstillende dynamiske egenskaber.

De udførte simuleringer skal omfatte nedenstående testscenarier, hvor disse, med undtagelse af Test 5, skal simuleres med PSS-funktionen aktiveret menholdvis deaktiveret:

1. Verifikation af frekvenskarakteristikken, herunder korrekt fasekompensering af det samlede magnetiseringsanlæg, i form af Bode plots for forstærkning og fase.
2. Stepespons ved en momentan +/- 5 % ændring af referencespænningen. Simuleringer gennemføres for forskellige arbejds punkter, fx 25 %, 50 %, 75 % og 100 % af anlæggets nominelle effekt.

3. Generatoren korts slutninger.

4. Udkobling af en linje, hvor ændringen i det kollektive elforsyningsnet går fra stærkeste til svageste net konfiguration (kortslutningseffekt). Simuleringer gennemføres for forskellige arbejdspunkter, fx 25 %, 50 %, 75 % og 100 % af anlæggets nominelle effekt.

5. Ændring af generatorens tilførte mekaniske effekt fra drivmaskinen i henhold til en funktion (PSS- enhed skal være aktiv):
 a. Sinuskurve, \(p(t) = A \cdot \sin(\omega t) \), \(A = 0,1 \ pu \), \(\omega = 2 \cdot \pi \cdot \frac{1}{60} \ rad \)
 b. Rampekurve, \(p(t) = \begin{cases} 0 & \text{hvor} \ t < 0 \ s \\ 0,25 \cdot t \ pu \ hvor \ 0 \ sec < t \leq 4 \ s \\ 1 \ pu \ hvor \ t > 4 \ s \end{cases} \)
 c. Steppkurve, \(p(t) = \begin{cases} 1 \ pu \ hvor \ t < 0 \ s \\ 0,6 \ pu \ hvor \ t > 0 \ s \end{cases} \)

Den udførte idriftsættelse skal indeholde nedenstående tests:

1. Måling af fase og forstærkning (bode plot) for overføringsfunktionen \(V_t(s) / V_{ref}(s) \) med PSS-funktionen deaktiveret og SPG drevet "off-grid", ved nominel omløbshastighed og -terminalspænding.

2. Måling af fase og forstærkning (bode plot) for overføringsfunktionen \(V_t(s) / V_{ref}(s) \) med PSS-funktionen deaktiveret og SPG drevet "on-grid", ved et driftspunkt så tæt på \(P = 0 \) og \(Q = 0 \), som muligt.

4. Stepresponse test ved en momentan +/- 5 % ændring af referencespænningen. Testen gennemføres for forskellige arbejdspunkter, fx 25 %, 50 %, 75 % og 100 % af anlæggets nominelle effekt med PSS-funktionen aktiveret henholdsvis deaktiveret.

5. Forøgelse af PSS-forstærkning med en faktor 3 af den foreslåede værdi.

Reguleringsfunktioner for reaktiv effekt regulering

Følgende krav til reguleringsfunktioner for reaktiv effekt og spænning:

Reguleringsfunktionerne Q-regulering, effektfaktor og spændingsregulering udelukker gengivert hinanden, så det kun er en af de tre funktioner, den kan aktiveres ad gangen.

Q-regulering
For reguleringsfunktionen for Q-regulering gælder, at nøjagtigheden for en fuldført eller en kontinuerlig regulering maksimalt må afvige med en gennemsnitlig størrelse på fejlen < 3 % af \(Q_n \) målt over en periode på 1 minut. Anlægget skal kunne modtage et setpunkt med en minimumsopløsning af Q på 100 kVAR.

Effektfaktorregulering
For reguleringsfunktionen effektfaktorregulering gælder, at nøjagtigheden for en fuldført eller en kontinuerlig regulering maksimalt må afvige med en gennemsnitlig størrelse på fejlen < 3 % af \(Q_n \) målt over en periode på 1 minut.

Den aktuelle Q-værdi skal omregnes ud fra anlæggets aktuelle effektfaktorsetpunkt.

Anlægget skal kunne modtage et setpunkt med en minimumsopløsning af effektfaktoren på 0,01.

Automatisk spændingsregulering (AVR)
Nøjagtigheden af den fuldførte ændring eller af en kontinuerlig regulering, inkl. nøjagtighed på setpunktet, må maksimalt afvige 0,5 % af spændingsreguleringen.

Anlægget skal kunne modtage et setpunkt for spændingen med en minimumsopløsning på 0,1 kV.

Statikken for automatisk spændingsregulering skal kunne indstilles til en værdi i området mellem 2 og 8 %, begge inklusive.

4.4.2 37PPM – Elproducerende anlæg

Hurtig fejlstrom
Et elproducerende anlæg skal kunne levere hurtig fejlstrom ved tilslutningspunktet i tilfælde af en symmetrisk (trefase) fejl.

Anlægget skal kunne aktivere forsyningen af hurtig fejlstrom enten ved at:

- sikre forsyningen af hurtig fejlstrom ved tilslutningspunktet eller
- måle spændingsafvigelsene ved det elproducerende anlæg’s individuelle enheders terminaler og levere hurtig fejlstrom ved disse enheders terminaler

Regulering skal følge nedenstående krav, hvor den reaktive tillægsstrøm (synkronkomposanten) efter 100 ms følger karakteristikken med en tolerance på ±20 %. Dette kan ses på nedenstående figurer, hvor Y-aksen angiver den anvendte styrespænding for 50 Hz-komponenten.

CE: IQ/in lineært fra 0% - 100 % ved U_{pgc}: 0,85 p.u to 0,5 p.u.
N: IQ/in lineært fra 0% - 100 % ved U_{pgc}: 0,9 p.u to 0,5 p.u.

I område B, vist på figurerne, har levering af reaktiv strøm første prioritet, mens levering af aktiv effekt har anden prioritet.

CE (DK1)

37 Artikel 20, stk. 2, litra b
Figur 18 Krav til reaktiv tillægsstrøm i CE (DK1)

- $U_c < 0,85 \text{ pu}$: start
- $U_c > 0,85 \text{ pu}$: stop

Figur 19 Krav til reaktiv tillægsstrøm i N (DK2)

- $U_c < 0,9 \text{ pu}$: start
- $U_c > 0,9 \text{ pu}$: stop

Kompensering
Det påhviler anlægsejer at kompensere for anlægshaandterings reaktive effekt i situationer, hvor anlægget er udkoblet eller ikke producerer aktiv effekt.

38 **Reaktiv effekt ved maksimaleffekt**

U-\(\frac{Q}{P_{max}}\)-profil giver rammerne for, hvor det elproducerende anlæg skal kunne levere reaktiv effekt ved maksimaleffekten.

Figur 20 Krav til levering af reaktiv effekt U-\(\frac{Q}{P_n}\) ved maksimaleffekt for PPM

Kratet om levering af reaktiv effekt gælder ved tilslutningspunktet.

38 **Artikel 21, stk. 3, litra b**
Reaktiv effekt under maksimaleffekten

P-Q/P\textsubscript{max}-profil giver rammerne for hvor det elproducerende anlæg skal kunne levere reaktiv effekt under maksimaleffekten.

![Diagram](image)

Figur X
Figur 21 Krav til levering af reaktiv effekt P-Q/P\textsubscript{n} under maksimaleffekt

- I dette område tillades det, at de reaktive egenskaber for PPM kan være begrænset af et reduceret antal enheder i PPM som er i drift, grundet vedligehold eller fejl.
- I dette område tillades det, at de reaktive egenskaber for PPM kan være begrænset af et reduceret antal enheder i PPM som er i drift, grundet opstart og nedlukning som funktion af primær energi, vedligehold eller fejl.

Det elproducerende anlæg skal, når det kører ved en aktiv effekt under maksimaleffekten (P < P\textsubscript{max}), kunne levere reaktiv effekt ved et hvilket som helst driftspunkt inden for rammerne af P-Q/P\textsubscript{max}-profilen. Dog reduceres kravet, hvis enheder i produktionsanlægget er ude af drift pga. vedligeholdelse eller fejl.

Det elproducerende anlæg skal kunne bevæge sig til et hvilket som helst driftspunkt i P-Q/P\textsubscript{max}-profilen inden for et passende tidsrum med henblik på at nå de værdier, som Energinet anmoder om.

Tilstande for regulering af reaktiv effekt

39 Artikel 21, stk. 3, litra c
Det elproducerende anlæg skal automatisk kunne levere reaktiv effekt i en af følgende driftstilstande:

- Spændingsregulering
- Reaktiveffektregulering
- Effektfaktorregulering

Spændingsreguleringstilstand:
Bidrage med spændingsregulering ved tilslutningspunktet gennem udveksling af reaktiv effekt med nettet med et referencepunkt for spænding, der dækker 0,95 til 1,05 pu i trin på højst 0,01 pu og en positiv hældning i et interval på mindst 2 % til 7 % i trin på højst 0,5 %. Den reaktive effekt skal være nul, når nettets spændingsværdi ved tilslutningspunktet er lig spændingsreferencepunktet.

Referencepunktet kan styres med eller uden dødbånd, der kan vælges i et interval fra 0 til ± 5 % af nettets referenceværdi 1 pu i trin på højst 0,5 %

Det elproducerende anlæg skal efter en ændring i spændingstrin kunne opnå 90 % af ændringen i reaktiv effekt inden for 1 sek. og positionere sig ved den værdi, der fastsættes af den positive driftshældning, inden for 2 sek., med en maksimal tilladt afvigelser i statisk tilstand på ikke mere end 5 % af den maksimale reaktive effekt.

Reaktiveffektreguleringstilstand
Referencepunktet for reaktiv effekt indstilles hvor som helst i intervallet for reaktiv effekt, som angivet ovenfor, i trin på højst 5 MVAR eller 5 % af den fulde reaktive effekt (alt efter hvad der er mindst), og kontrollere den reaktive effekt ved tilslutningspunktet med en nøjagtighed på ± 5 MVAR eller ± 5 % af den fulde reaktive effekt (alt efter hvad der er mindst)

Effektfaktorreguleringstilstand
Effektfaktoren kontrolleres ved tilslutningspunktet inden for det påkrevende interval for reaktiv effekt, som beskrevet ovenfor, med en måleffektfaktor i trin på højst 0,01.

Måleffektfaktoren, Target:
- Opløsning på 0,01

Tolerance og tid til nyt setpunkt:
- For regulatoringsfunktionen gælder, at nøjagtigheden for en fuldført regulering, over en periode på 1 minut, maksimalt må afvige 2 % af Qn.
- Regulering til et nyt setpunkt for effektfaktor skal påbegyndes inden for 2 sekunder og skal være fuldført inden for 30 sekunder fra modtagelse af ordre om setpunktsændring.

For fjernstyring af justeringen af det relevante referencepunkt gælder, at driftsmode er betinget af ydelseslevering. Produktionstelegraf anvendes til drift- og driftspunktændringer.

40 Artikel 21, stk. 3, litra d

Hvor der anvendes viklingskobler på maskintransformer/nettransformer, kan det aftales med Energinet, at viklingskoblen må anvendes til opfyldelse af krav til reaktive reguleringsegenskaber. Hvis aftale indgås skal det fremgå af nettølslutningsaftalen for anlægget.

Hvis der anvendes viklingskobler på maskintransformeren/nettransformeren, er anlægsejer ansvarlig for den rette koordinering mellem anlæggets reaktive reguleringsfunktioner og viklingskoblerreguleringen.

Prioritering

Reaktiv strøm prioriteres under fejl, hvor der kræves tolerance overfor spændingsfejl.

4.5 Genoprettelse af systemet

4.5.1 Genindkobling

Et produktionsanlæg kan genoprette koblingen til nettet efter en tilfældig afkobling forårsaget af en netforstyrrelse, under følgende betingelser:

- Frekvensen skal ligge i interвалlet:
 - CE: 47,5 - 50,2 Hz
 - N: 47,5 - 50,5 Hz

- Spændingen skal ligge i interвалlet:

<table>
<thead>
<tr>
<th>CE:</th>
<th>110-300 kV</th>
<th>300-400 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N:</td>
<td>0,90 pu - 1,118 pu</td>
<td>0,90 pu - 1,05 pu</td>
</tr>
<tr>
<td>N:</td>
<td>0,9 - 1,05 pu</td>
<td></td>
</tr>
</tbody>
</table>

- Genindkobling efter 3 min.
- Gradient: 20 % \(P_n \)/min.
- Kobling med eget udstyr er tilladt så længe nettet er spændingssat.
- Kobling med andres udstyr er efter aftale med anlægsejer

Installation af automatiske genoprettelsessystemer er underlagt forhåndsgodkendelse hos Energinet.

4.5.2 Start fra dødt net

Der stilles ikke krav om, at anlæg skal kunne starte fra dødt net.

Energinet laver løbende behovsanalyser i forhold til "Start fra dødt net", og indhenter tilbud samt indgår aftaler på denne baggrund.

Artikel 21, stk. 3, litra e
Artikel 14, stk. 4, litra a og b
Artikel 15, stk. 5, litra a
Produktionsanlæg med evne til start fra dødt net skal kunne starte op efter en nedlukning uden nogen form for forsyning af ekstern elektrisk energi og inden for en tidsramme, der fastsættes af Energinet

Et produktionsanlæg med evne til start fra dødt net skal kunne synkronisere inden for de frekvensgrænser, der er fastsat i artikel 13, stk. 1, litra a), og de spændingsgrænser, der er fastsat i artikel 16, stk. 2

Et produktionsanlæg med evne til start fra dødt net skal automatisk kunne regulere spændingsdyk, der forårsages af efterspørgselstilslutning

Et produktionsanlæg med evne til start fra dødt net skal kunne:

- regulere store blokke af efterspørgselsforbindelser
- køre i LFSM-O-tilstand og LFSM-U-tilstand, jf. stk. 2, litra c), og artikel 13, stk. 2
- regulere frekvensen inden for hele intervallet for aktiv effekt i tilfælde af overfrekvens og underfrekvens inden for spændet mellem den nedre grænse for regulering og maksimaleffekten samt på blok-Ø-niveau
- køre parallel drift af nogle få produktionsanlæg inden for én Ø og
- regulere spændingen automatisk, mens systemet genoprettes.

4.5.3 Deltagelse i Ø-drift

Produktionsanlæg skal kunne deltage i Ø-drift, hvor frekvensgrænserne svarer til de generelle frekvensgrænser, og spændingsgrænserne tilsvarende svarer til de generelle spændingsgrænser.

Produktionsanlægget skal kunne køre i FSM-tilstand under Ø-drift.

I tilfælde af effektoverskud skal produktionsanlægget kunne reducere produktionen af aktiv effekt fra et forudgående driftspunkt til et nyt driftspunkt inden for P-Q-diagrammet. I den forbindelse skal produktionsanlægget kunne reducere produktionen af aktiv effekt, så meget som det i sagens natur er teknisk muligt, dog til minimum 55 % af dets maksimaleffekt.

Den metode, der benyttes til at fastslå et skifte fra sammenkoblede drift til Ø-drift, aftales mellem anlægsejeren og Energinet.

Energinets kontrolcenter ændrer driftsstatus til ”Skærpet drift”, når der er tale om Ø-drift.

Detektering sker via PMU data med Ø-drift detekteringsmodul.

Produktionsanlægget skal kunne køre i LFSM-O-tilstand og LFSM-U-tilstand under Ø-drift.

4.5.4 Hurtig gensynkronisering

Produktionsanlægget skal i tilfælde af afkobling fra nettet hurtigt kunne gensynkronisere i overensstemmelse med den beskyttelsessstrategi, der er aftalt med Energinet.

Artikel 15, stk. 5, litra b
Artikel 15, stk. 5, litra c
Et produktionsanlæg skal med en minimumstid for gensynkronisering på mere end 15 minutter være konstrueret til efter frakobling fra en ekstern energiforsyning at overgå til blok-φ-drift fra et hvilket som helst driftspunkt i P-Q-diagrammet. I dette tilfælde må konstateringen af blok-φ-drift ikke udelukkende tage udgangspunkt i positionssignalerne fra systemoperatørens koblingsudstyr.

Et produktionsanlæg skal kunne opretholde driften ved overgang til blok-φ-drift, uden hensyntagen til en eventuel hjælpeforbindelse til et eksternt net. Minimumsdriftsperioden er:

- SPG: 0 min.
- PPM: 0 min da re-synkroniseringsstid er < 15 minutter.

4.6 Spændingskvalitet

Krav for spændingskvalitet er anført i Teknisk forskrift 3.2.7, som kan findes her.
5. Proces for tilslutning\footnote{Artikel 41}

For at tilslutte et anlæg skal man igennem en nettillutsningsproces. De overordnede trin er illustreret i nedenstående figur og efterfølgende beskrevet.

Ved ønske om tilslutning af et større anlæg rettes først henvendelse til det lokale netselskab for afklaring af, om tilslutningspunktet skal ligge i distributionsnettet eller transmissionsnettet. Hvis anlægget forventes tilsluttet i transmissionsnettet, påbegyndes nettillutsningsprocessen, som den er beskrevet nedenfor og i denne præsentation. I det følgende afsnit er det kort beskrevet, hvilke informationer og dokumenter Energinet forventer at modtaget fra anlægsejer i forbindelse med tillutsningsprocessen.

5.1 Afklaring af tekniske spørgsmål

Anlægsejer kontakter Energinet for at få svar på generelle tekniske spørgsmål. Følgende data skal blandt andet benyttes:

a) Dokumentation for afklaring af tillutsningspunkt
b) Anlægsejer og kontaktpersoners navn og adresse, telefonnummer og mailadresse
c) Beskrivelse af anlægget
d) Anlægstype
e) Anlæggets forventede maksimale produktion (mærkeeffekt)
f) Geografisk placering, evt. GIS koordinater (hvis kendt)
g) Oplæg til konceptuel teknisk løsning
h) Forventet start- og sluttidspunkt for etablering og tilslutning af anlægget
i) Eventuel afklaring angående nominel spænding

Tidlige afklaringer, der gennemføres indenfor 20 arbejdstimer, hvor Energinet leverer rådgivning til behovsforståelse og udarbejdelse af aftale, afholdes af Energinet.

Hvis Energinet skal lave beregninger/analyser for at kunne svare, opretter Energinet et projekt.
Anlægsejer betaler for de timer, Energinet bruger på beregninger/analyser.

I den anledning kan anlægsejer blive bedt om en række tekniske input til udarbejdelse af modeller.

Typiske elementer som Energinet afklarer er:

- a) Forventede tekniske krav (henvisning til regelsæt)
- b) Første bud på konceptuel teknisk løsning
- c) Forventet overordnet tidsplan for tilslutning
- d) Tidlig identifikation af principielle problemstillinger (hvis relevant)

Anlægsejer stiller den nødvendige garanti.

Hvis tilslutningen kræver ændringer i nettet, opretter Energinet et projekt og får grundlaget for dette projekt godkendt.

5.2 Modning af projekt

Anlægsejer og Energinet indgår en aftale om modning af projektet (forberedelse til byggefasen), denne indeholder en tidsplan for projektet og bygger videre på den viden, man har opnået under de tekniske afklaringer.

Energinet udfører de nødvendige beregninger og analyser, hvor flere løsningsalternativer opstilles. Disse gennemgås teknisk, således at en samfundsøkonomisk analyse af disse alternativer danner baggrund for det endelige valg af løsning.

Anlægsejer og Energinet indgår en nettilslutningsaftale (dækker fra byggefasen til nettilslutning), denne indeholder bl.a. betingelser for opførelse af tilslutningsstation, etablering af nettilslutningspunkt og sammenkoblingsaftale.

Nettilslutningsaftalen udarbejdes på baggrund af en standardskabelon. Til denne hører et standardbilag, som beskriver nettilslutningsvilkår for produktionsanlæg.

Energinet opretter anlægget i stamdataregisteret. Anlægget får et GSRN-nummer.

Anlægsejer sender dokumentation af aftale med balanceansvarlig.

5.3 Byggefasen

Når det endelige valg angående teknisk løsning er foretaget, og der er indgået en nettilslutningsaftale, påbegyndes byggefasen.

Anlægsejer bygger sit anlæg, og Energinet laver samtidig nødvendige ændringer i nettet.

5.4 Spændingssætningstilladelse\(^{47}\) (EON)

Spændingssætningstilladelsen tillader anlægsejer at spændingssætte anlæggets interne net samt hjælpeforsyninger

Spændingssætningstilladelsen udstedes af Energinet efter indgåelse af nettilslutningsaftale.

\(^{47}\) I forordningen kaldt "idriftsættelsesstilladelse"
For at opnå spændingssætningstilladelse skal anlægsejer sikre dokumentation indenfor emnerne:

- Stamdata
- Sammenkoblingsaftale
- Spændingsskvalitet / emission af harmoniske forstyrrelser
- Reaktiv effekttræk
- Afregning

5.5 Midlertidig driftstilladelse

Den midlertidige driftstilladelse tillader anlægsejer at drive produktionsanlæg og producere strøm ved brug af nettillslutningen i en tidsbegrænset periode på højest 24 måneder.

Den midlertidige driftstilladelse udstedes af Energinet på baggrund af de leverede data og foretagne undersøgelser.

Anlægsejer forventes at levere dokumentation som beskrevet i vejledning ION. Rammene for overensstemmelseressimulationer, som skal gennemføres for at opnå en midlertidig driftstilladelse, er nærmere beskrevet i afsnit 6.3.

5.6 Endelig driftstilladelse

Den endelige driftstilladelse tillader anlægsejer at drive produktionsanlæg og producere strøm ved brug af nettillslutningen.

Den endelige driftstilladelse udstedes af Energinet, når alle problemområder er elimineret, og modeller og antagelser fra den midlertidige driftstilladelse er bevisført ved test.

Rammene for overensstemmelsestest, som skal gennemføres for at opnå en endelig driftstilladelse, er nærmere beskrevet i afsnit 6.4.

Hvis overensstemmelsestest eller simuleringer ikke kan gennemføres som aftalt mellem Energinet og anlægsejeren som følge af grunde, der kan henføres til Energinet, må Energinet ikke tilbageholde nettillslutningstilladelsen.

5.7 Begrenset driftstilladelse

Begrenset driftstilladelse kan komme på tale ved ændringer i anlægget og ved fejsituationer.

5.7.1 Ændring af anlæg

Anlægsejere, der har fået tildelt en endelig driftstilladelse, skal underrette Energinet om enhver planlagt ændring af produktionsanlæggets tekniske kapacitet, der kan have betydning for opfyldelsen af kravene i forordningen, inden ændringen foretages. Anlægsejeren underretter Energinet om planlagte testprogrammer og -procedurer, der skal følges i forbindelse med verificering af et produktionsanlæggs opfyldelse af kravene i god tid inden de iværksættes. Overensstemmelsessimulationer, som skal gennemføres for at opnå en begrenset driftstilladelse, er nærmere beskrevet i afsnit 6.3. Anlægsejer ansøger samtidig hermed Energinet om en begrenset driftstilladelse. Energinet forhåndsgodkender de planlagte testprogrammer og -procedurer.

48 I forordningen kaldt "midlertidig nettillslutningstilladelse"
49 I forordningen kaldt "endelig nettillslutningstilladelse"
50 I forordningen kaldt "begrenset nettillslutningstilladelse"
51 Artikel 40, stk. 2.
En begrænset driftstilladelse udstedes af Energinet og indeholder følgende oplysninger, der klart skal kunne identificeres:

- Årsagen til en begrænset driftstilladelse,
- ansvarsfordelingen og tidsfristerne for test og verifikation, og
- den maksimale gyldighedsperiode, der ikke må overstige 12 måneder. Der kan indledningsvis fastsættes en kortere periode, som kan forlænges, hvis der til Energinet fremlægges tilfredsstillende dokumentation, der påviser en tydelig fremgang hen mod fuld overensstemmelse.

Såfremt de væsentlige ændringer giver anledning til nye funktionaliteter eller kapaciteter, skal der ansøges om en ny endelig driftstilladelse (FON).

5.7.2 Fejl på anlæg

Anlægsejere, der har fået tildelt en endelig driftstilladelse, underretter straks Energinet, såfremt følgende gør sig gældende:

- Anlægget har midlertidig mistet kapacitet, hvilket har indflydelse på dets ydeevne, eller
- fejl på udstyr fører til manglende opfyldelse af et eller flere af de relevante krav.

Anlægsejer ansøger Energinet om en begrænset driftstilladelse, hvis anlægsejer med rimelighed kan forvente, at varigheden overstiger tre måneder.

En begrænset driftstilladelse udstedes af Energinet og indeholder følgende oplysninger, der klart skal kunne identificeres:

- De uløste problemer, der har udløst en begrænset driftstilladelse,
- ansvarsfordelingen og tidsfristerne for forventet løsning af problemerne, og
- den maksimale gyldighedsperiode, der ikke må overstige 12 måneder. Der kan indledningsvis fastsættes en kortere periode, som kan forlænges, hvis der til Energinet fremlægges tilfredsstillende dokumentation, der påviser en tydelig fremgang hen mod fuld overensstemmelse.

5.7.3 Generelt for begrænset driftstilladelse

Den endelige driftstilladelse Suspenderes i den periode den begrænsede driftstilladelse gælder for. Dette gælder kun for de punkter, som den begrænsede driftstilladelse vedrører.

Den begrænsede driftstilladelse kan forlænges uover hovenævnte periode på 12 måneder på baggrund af en anmodning om undtagelse, der fremsendes til Energinet, i god tid inden perioden udløber. Energinet behandler denne anmodning i henhold til reglerne om undtagelsesansøgninger (se afsnit 7 Undtagelse).

Energinet har ret til at afvise driften af et produktionsanlæg, når den begrænsede driftstilladelse ikke længere er gyldig.

Hvis Energinet ikke forlænger den begrænsede driftstilladelses gyldighedsperiode i overensstemmelse med undtagelsesproceduren eller afviser at tillade driften af produktionsanlægget, når den begrænsede driftstilladelse ikke længere er gyldig, kan anlægsejer anmode Forsyningstilsynet om at træffe en afgørelse senest seks måneder efter, at Energinet har meddelt sin beslutning/truffet afgørelse.

6. Simulering og Test

6.1 Anlægsejers ansvar

Anlægsejeren sikrer, at hvert enkelt produktionsanlæg opfylder kravene i forordningen i hele anlæggets levetid.
Anlægsejer underretter Energinet om enhver planlagt ændring af produktionsanlæggets tekniske kapacitet, inden ændringerne foretages.

Anlægsejer underretter omgående Energinet om enhver hændelse vedrørende driften eller fejl på produktionsanlæg, der har indvirkning på opfyldelsen af kravene i denne forordning, umiddelbart efter at sådanne hændelser finder sted.

Anlægsejer underretter Energinet om planlagte testprogrammer og -procedurer, der skal følges i forbindelse med verificeringen af et produktionsanlægs opfyldelse af kravene i denne forordning, i god tid inden de iværksættes. Energinet forhåndsgodkender de planlagte testprogrammer og -procedurer. Energinets godkendelse gives i rimelig tid og må ikke forsinkes uden rimelig grund.

Energinet kan deltage i sådanne test og registrere produktionsanlæggets ydeevne.

6.2 Energinets opgaver
Energinet vurderer et produktionsanlægs opfyldelse af kravene i forordning i hele elværkets levetid. Anlægsejer skal have meddelelse om resultatet af Energinets vurdering.

Energinet har ret til at anmode anlægsejerne om at udføre test og simuleringer i henhold til en genoptagelsesplan eller en generel ordning eller umiddelbart efter en fejl, ændring eller udskiftning af udstyr, der kan have indvirkning på produktionsanlæggets opfyldelse af kravene i forordningen.

Energinet skal meddele anlægsejer resultatet af disse test og simuleringer.

6.3 Fælles bestemmelser om simulering
Simulering af produktionsanlæggets ydeevne har blandt andet til formål at påvise, at kravene i forordningen er opfyldt, og er nødvendig for at opnå en midlertidig driftstilladelse (ION).

For at opnå midlertidig driftstilladelse skal anlægsejer sikre dokumentation indenfor emnerne:

- Stamdata
- Aktive effektrereguleringsegenskaber
- Reaktive effektrereguleringsegenskaber
- Robusthed overfor spændings- og frekvensforstyrrelser
- Spændingskvalitet
- Simuleringsmodeller
- Testplan

Nærmere beskrivelse af denne dokumentation findes i vejledning ION.

52 Artikel 43
53 Artikel 51-56
Hvis anlægsejer ønsker det, kan Energinet tillade, at anlægsejeren gennemfører alternative simuleringer, forudsat at disse simuleringer er effektive og tilstrækkelige til at påvise, at produktionsanlægget opfylder kravene i forordningen.

Hvis anlægsejers simulering ikke er tilstrækkelig til at påvise, at kravene i forordningen opfyldes, kan Energinet kræve, at anlægsejeren gennemfører yderligere eller alternative simuleringer.

Energinet har ret til at kontrollere, om produktionsanlægget opfylder kravene i forordningen ved selv at gennemføre simuleringer på baggrund af de fremlagte simulersrapporter, simuleringssynkroniseringer og testmålinger.

Energinet forsyner anlægsejeren med tekniske oplysninger og en simuleringssynkronisering for nettet, i det omfang disse er nødvendige for at gennemføre simuleringer.

6.4 Fælles bestemmelser om test54

Test af produktionsanlæggets ydeevne har til formål at påvise, at kravene i forordningen er opfyldt, og er nødvendig for at opnå en endelig driftstilladelse (FON).

Energinet har ret til at:

a) tillade, at anlægsejeren gennemfører alternative test, forudsat at disse test er effektive og tilstrækkelige til at påvise, at produktionsanlægget opfylder kravene i forordningen,

b) kræve, at anlægsejeren gennemfører yderligere eller alternative test i tilfælde, hvor de oplysninger, som Energinet modtager i forbindelse med test ikke er tilstrækkelige til at påvise, at kravene i forordningen opfyldes, og

c) kræve, at anlægsejeren gennemfører passende test med henblik på at påvise produktionsanlæggets ydeevne ved drift baseret på alternative brændstoffer eller brændstofmiks. Energinet og anlægsejeren aftaler, hvilke typer brændstof der skal prøves.

Det ovenstående a-c berører ikke minimumskravene til test.

Energinet arbejder på en detaljeret liste over de informationer og dokumenter, som anlægsejer skal levere for at opnå endelig driftstilladelse (FON), svarende til vejledning ION.

Anlægsejeren er ansvarlig for at gennemføre test i overensstemmelse med betingelserne nedenfor. Energinet samarbejder med anlægsejeren herom, og forsinken ikke unødvigt gennemførelsen af testene.

6.5 Test af synkronisering produktionsanlæg55

Anlægsejere gennemfører test for at dokumentere overensstemmelse.

54 Artikel 42

55 Artikel 44-46
I stedet for at gennemføre de relevante test kan anlægsejeren vælge at henholde sig til produktcertifikater, der er udstedt af et godkendt certifieringsorgan, med henblik på at påvise opfyldelse af det pågældende krav. I så fald indgives produktcertifikaterne til den relevante systemoperatør.

LFSM-O-tilstand:

a) produktionsanlæggets tekniske kapacitet til konstant modulering af aktiv effekt med henblik på at bidrage til frekvensreguleringen i tilfælde af en stor stigning i systemets frekvens skal påvises. Parametre for regulering i statisk tilstand, såsom parametre for statik (negativ hældning) og dødbånd samt dynamiske parametre, herunder respons på ændringer i frekvenstrin, skal verificeres

b) testen gennemføres ved at simulere frekvenstrin og -ramper, der er store nok til at udløse en ændring i maksimaleffekten for aktiv effekt på mindst 10 % under hensyntagen til statikindstillingerne for negativ hældning og dødbåndet. Om nødvendigt indgives der simulerede signaler om frekvensafsigelse i kontrollsystemet under hensyntagen til det pågældende kontrolsystem.

c) testen betragtes som vellykket, hvis følgende betingelser er opfyldt:
 i. testresultaterne for såvel de dynamiske som de statiske parametre opfylder kravene i artikel 13, stk. 2, og
 ii. der forekommer ingen udæmpede svingninger efter responsen på trinændringen.

LFSM-U-tilstand:

a. produktionsanlæggets tekniske kapacitet til konstant modulering af aktiv effekt ved driftspunkter under maksimaleffekten med henblik på at bidrage til frekvensreguleringen i tilfælde af et stort fald i systemets frekvens skal påvises

b. testen gennemføres ved at simulere passende referencepunkter for aktiv effekt ved lave frekvenstrin og -ramper, der er store nok til at udløse en ændring på mindst 10 % af maksimaleffekten for aktiv effekt under hensyntagen til statikindstillingerne for negativ hældning og dødbåndet. Om nødvendigt indgives der simulerede signaler om frekvensafsigelse i kontrollsystemet.

c. testen betragtes som vellykket, hvis følgende betingelser er opfyldt:
 i. testresultaterne for såvel de dynamiske som de statiske parametre opfylder kravene i artikel 15, stk. 2, litra c), og
 ii. der forekommer ingen udæmpede svingninger efter responsen på trinændringen.

FSM-tilstand:

a) produktionsanlæggets tekniske kapacitet til konstant modulering af aktiv effekt i det fulde driftsinterval mellem maksimaleffekten og den nedre grænse for regulering med henblik på at bidrage til frekvensreguleringen skal påvises. Parametre for regulering i statisk tilstand, såsom parametre for statik (negativ hældning) og dødbånd samt dynamiske parametre, herunder robusthed ved respons afvigelser i frekvenstrin og store, hurtige ændringer i frekvens, skal verificeres

b) testen gennemføres ved at simulere frekvenstrin og -ramper, der er store nok til at udløse hele intervallet for frekvensrespons for aktiv effekt i statikindstillingerne for negativ hældning, dødbåndet og evnen til at øge eller reducere den aktive effekt i forhold til det pågældende driftspunkt. Om nødvendigt indgives der simulerede signaler om frekvensafsigelse i kontrollsystemet.

c) testen betragtes som vellykket, hvis følgende betingelser er opfyldt:
 i. tiden frem til fuld aktivering af frekvensresponsintervallet for aktiv effekt som et resultat af frekvenstrinændringen overstiger ikke den i artikel 15, stk. 2, litra d), fastsatte tid
ii. der forekommer ingen udæmpede svingninger efter responsen på trinændringen
iii. den indledende forsinkelse overholder bestemmelserne i artikel 15, stk. 2, litra d)
iv. statikindstillingerne for negativ hældning er til rådighed inden for det i artikel 15, stk. 2, litra d), fastsatte interval, og dødbåndet (taersklen) overstiger ikke den i samme artikel fastsatte værdi, og
v. frekvensresponsen for aktiv effekts ufølsomhed ved et hvilket som helst relevant driftspunkt overstiger ikke de i artikel 15, stk. 2, litra d), fastsatte krav.

Frekvensgenoprettelseskontrol:
 a) produktionsanlæggets tekniske kapacitet til at deltage i frekvensgenoprettelseskontrol skal påvises, og samarbejdet mellem FSM-tilstand og frekvensgenoprettelseskontrol skal kontrolleres
 b) testen betragtes som vellykket, hvis resultaterne for såvel de dynamiske som de statiske parametre opfylder kravene i artikel 15, stk. 2, litra e).

Evnen til start fra dødt net:
 a) hvis et produktionsanlæg har evne til start fra dødt net, skal denne evne til at starte op efter en nedlukning uden nogen form for forsyning med ekstern elektrisk energi påvises
 b) testen betragtes som vellykket, hvis opstartstiden holdes inden for den tidsramme, der er fastsat i artikel 15, stk. 5, litra a), nr. iii).

Oversgang til blok-Ø-drift:
 a) produktionsanlæggets tekniske kapacitet til at overgå til og opretholde stabil drift i blok-Ø-drift skal påvises
 b) testen gennemføres ved maksimaleffekt og produktionsanlæggets nominelle reaktive effekt inden lastfordeling
 c) den relevante systemoperatør skal have ret til at fastsætte yderligere betingelser under hensyntagen til artikel 15, stk. 5, litra c)
 d) testen betragtes som vellykket, hvis overgangen til blok-Ø-drift er vellykket, der er påvist stabil blok-Ø-drift i den i artikel 15, stk. 5, litra c), fastsatte tidsperiode, og gensynkronisering med nettet er gennemført på vellykket vis.

Evnen til at levere reaktiv effekt:
 a) produktionsanlæggets tekniske kapacitet til at levere reaktiv effekt med positiv og negativ faseforskydning i overensstemmelse med artikel 18, stk. 2, litra b) og c), skal påvises
 b) testen betragtes som vellykket, hvis følgende betingelser er opfyldt:
 i. produktionsanlægget kører ved maksimal reaktiv effekt, med både positiv og negativ faseforskydning, i mindst en time ved:
 - laveste stabile driftsniveau
 - maksimaleffekt og
 - et driftspunkt for aktiv effekt, der ligger mellem disse maksimums- og minimumsniveauer
 ii. produktionsanlæggets evne til at skifte til en hvilken som helst værdi for reaktiv effekt inden for det aftalte eller fastsatte interval for reaktiv effekt er påvist.

6.6 Test af Power Park Moduler (elproducerende anlæg) 56

Anlægsejere gennemfører test for at dokumentere overensstemmelse.

56 Artikel 47-49
I stedet for den relevante test kan anlægsejeren vælge at henholde sig til produktcertifikater, der er udstedt af et god-kendt certificeringsorgan, med henblik på at påvise opfyldelse af det pågældende krav. I så fald indgives produktcertifikaterne til Energinet.

Forordningen sætter nedenstående krav til test, Energinet arbejder på en detaljeret liste over de informationer og dokumenter, som anlægsejer skal levere for at opnå endelig driftstilladelse (FON).

LFSM-O-tilstand:
Testen af LFSM-O-tilstand skal afspejle den relevante systemoperatørs valg af kontrolordning.

Begrænset LFSM-O-tilstand:

a) det elproducerende anlægs tekniske kapacitet til konstant modulering af aktiv effekt med henblik på at bidrage til frekvensreguleringen i tilfælde af en stigning i systemets frekvens skal påvises. Parametre for regulering i statisk tilstand, såsom parametre for statik (negativ hældning) og dødbånd samt dynamiske parametre, skal verificeres

b) testen gennemføres ved at simulere frekvenstrin og -ramper, der er store nok til at udløse en ændring i maksimaleffekten for aktiv effekt på mindst 10 % under hensyntagen til statikindstillingerne for negativ hældning og dødbåndet. Til gennemførelse af denne test indgives der simulerede signaler om frekvensafvigelse simultant ved kontrolsystemets referencer

c) testen betragtes som vellykket, hvis resultaterne for såvel de dynamiske som de statiske parametre opfylder kravene i artikel 13, stk. 2.

Den aktive effekts kontrollerbarhed og reguleringsområdet:

a) det elproducerende anlægs tekniske kapacitet til at fungere ved et lastniveau under det referencepunkt, som fastsættes af den relevante systemoperatør eller den relevante TSO, skal påvises

b) testen betragtes som vellykket, hvis følgende betingelser er opfyldt:

i. det elproducerende anlægs lastniveau holdes under referencepunktet

ii. referencepunktet implementeres i henhold til kravene i artikel 15, stk. 2, litra a), og

iii. reguleringens nøjagtighed overholder den i artikel 15, stk. 2, litra a), fastsatte værdi.

LFSM-U-tilstand:

a) det elproducerende anlægs tekniske kapacitet til konstant modulering af aktiv effekt i det fulde driftsinterval mellem maksimaleffekten og den nedre grænse for regulering med henblik på at bidrage til frekvensreguleringen skal påvises. Parametre for regulering i statisk tilstand, såsom parametre for ufølsomhed, statik (negativ hældning), dødbånd og reguleringsinterval samt dynamiske parametre, herunder respons på ændringer i frekvenstrin, skal verificeres
b) testen gennemføres ved at simulere frekvenstrin og -ramper, der er store nok til at udløse hele intervallet for frekvensresponser for aktiv effekt under hensyntagen til statikindstillingerne for negativ hældning og dødbåndet. Der indgives simulerede signaler om frekvensafvigelse
c) testen betragtes som vellykket, hvis følgende betingelser er opfyldt:
 i. tiden frem til fuld aktivering af frekvensresponsintervallet for aktiv effekt som et resultat af frekvenstrinændringen overstiger ikke den i artikel 15, stk. 2, litra d), fastsatte tid
 ii. der forekommer ingen udæmpede svingninger efter responsen på trinændringen
 iii. den indledende forsinkelse er i overensstemmelse med kravene i artikel 15, stk. 2, litra d)
 iv. statikindstillingerne for negativ hældning er til rådighed inden for de i artikel 15, stk. 2, litra d), fastsatte intervaller, og dødbåndet (tærsklen) overstiger ikke den af den relevante TSO fastsatte værdi, og
 v. frekvensresponsen for aktiv effekts ufølsomhed overstiger ikke det i artikel 15, stk. 2, litra d), fastsatte krav.

Frekvensgenoprettelseskontrol:
 a) det elproducerende anlægs tekniske kapacitet til at deltage i frekvensgenoprettelseskontrol skal påvises. Samarbejdet mellem FSM-tilstand og frekvensgenoprettelseskontrol skal kontrolleres
 b) testen betragtes som vellykket, hvis resultaterne for såvel de dynamiske som de statiske parametre opfylder kravene i artikel 15, stk. 2, litra e).

Evnen til at levere reaktiv effekt - A:
 a) det elproducerende anlægs tekniske kapacitet til at levere reaktiv effekt med positiv og negativ faseforskydning i overensstemmelse med artikel 21, stk. 3, litra b) og c), skal påvises
 b) testen gennemføres ved maksimal reaktiv effekt, med både positiv og negativ faseforskydning, og verificerer følgende parametre:
 i. drift over 60 % af maksimaleffekten i 30 minutter
 ii. drift i intervallet 30-50 % af maksimaleffekten i 30 minutter og
 iii. drift i intervallet 10-20 % af maksimaleffekten i 60 minutter
 c) testen betragtes som vellykket, hvis følgende betingelser er opfyldt:
 i. det elproducerende anlæg kører som minimum i den anmoderite periode ved maksimal reaktiv effekt, med både positiv og negativ faseforskydning, i henhold til hver af de i stk. 6, litra b), fastsatte parametre
 ii. det elproducerende anlægs evne til at skifte til en hvilken som helst værdi for reaktiv effekt inden for det aftalte eller fastsatte interval for reaktiv effekt er påvist, og
 iii. der finder ingen beskyttende foranstaltning sted inden for de driftsgrænser, der er fastsat i diagrammet for reaktiv effekt.

Spændingsreguleringstilstand:
 a) det elproducerende anlægs evne til at køre i spændingsreguleringstilstand, jf. betingelserne i artikel 21, stk. 3, litra d), nr. ii)-iv), skal påvises
 b) test af spændingsreguleringstilstand verificerer følgende parametre:
 i. den implementerede statik (positive hældning) og dødbånd, jf. artikel 21, stk. 3, litra d), nr. iii)
 ii. reguleringens nøjagtighed
 iii. reguleringens ufølsomhed og
 iv. tiden frem til aktivering af reaktiv effekt
 c) testen betragtes som vellykket, hvis følgende betingelser er opfyldt:
i. reguleringsintervallet, den justerbare statik (negativ hældning) og dødbåndet overholder den i artikel 21, stk. 3, litra d), aftalte eller fastsatte parameterkarakteristik

ii. spændingsreguleringens ufølsomhed overstiger ikke 0,01 pu, jf. artikel 21, stk. 3, litra d), og

iii. efter en ændring i spændingstrin er 90 % af ændringen i reaktiv effekt opnået inden for den tid og de tolerancer, der er fastsat i artikel 21, stk. 3, litra d).

Reaktiveffektreugleringstilstand – B:

a) det elproducerende anlæg evne til at køre i reaktiveffektreugleringstilstand, jf. betingelserne i artikel 21, stk. 3, litra d), nr. v), skal påvises

b) testen af reaktiveffektreugleringstilstand skal komplementere testen af evnen til at levere reaktiv effekt

c) test af reaktiveffektreugleringstilstand verificerer følgende parametre:

i. interval og stigning for den reaktive effekts referencepunkt

ii. reguleringens nøjagtighed og

iii. tiden frem til aktivering af reaktiv effekt

d) testen betragtes som vellykket, hvis følgende betingelser er opfyldt:

i. interval og stigning for den reaktive effekts referencepunkt sikres i overensstemmelse med artikel 21, stk. 3, litra d), og

ii. reguleringens nøjagtighed opfyller de i artikel 21, stk. 3, litra d), fastsatte betingelser.

Effektfaktorreugleringstilstand – C:

a) det elproducerende anlægs evne til at køre i effektfaktorreugleringstilstand, jf. betingelserne i artikel 21, stk. 3, litra d), nr. vii), skal påvises

b) test af effektfaktorreugleringstilstand verificerer følgende parametre:

i. intervallet for effektfaktorens referencepunkt

ii. reguleringens nøjagtighed og

iii. responsen for reaktiv effekt som følge af en trinændring i den aktive effekt

c) testen betragtes som vellykket, hvis følgende betingelser er kumulativt opfyldt:

i. interval og stigning for effektfaktorens referencepunkt sikres i overensstemmelse med artikel 21, stk. 3, litra d)

ii. tiden frem til aktivering af reaktiv effekt som følge af en trinændring i aktiv effekt overstiger ikke kravet i artikel 21, stk. 3, litra d), og

iii. reguleringens nøjagtighed overholder den i artikel 21, stk. 3, litra d), fastsatte værdi.

I forhold til test over for udveksling af reaktiv effekt kan vælges mellem: A, B og C.
7. Undtagelser

Artikel 60 i forordningen giver mulighed for at søge om undtagelse fra kravene i forordningen. Forsyningstilsynet kan give undtagelse fra en eller flere af bestemmelserne i forordningen, både for nye og eksisterende produktionsanlæg, i henhold til en ansøgning. Ansøgningen skal følge processen i nedenstående skema, når anlægget er tilsluttet transmissionssystemet.

<table>
<thead>
<tr>
<th>Undtagelser - Hvis der er modtaget afslag om netttilslutning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anlægsejer</td>
</tr>
<tr>
<td>Ansøgning</td>
</tr>
<tr>
<td>- Ejer + kontaktperson</td>
</tr>
<tr>
<td>- Beskrivelse af anlægget</td>
</tr>
<tr>
<td>- Hvis det kræves undtaget: Hvordan</td>
</tr>
<tr>
<td>- Detaljeret begrundelse (bilag og CBA)</td>
</tr>
<tr>
<td>- Ikke effekt på grænseovergående handel</td>
</tr>
<tr>
<td>Ja</td>
</tr>
<tr>
<td>Sende 6 mdr. fra ansøgning</td>
</tr>
<tr>
<td>+ 1 mdr. x suppl. Mat.</td>
</tr>
<tr>
<td>< 2 mdr.</td>
</tr>
<tr>
<td>Supplerende materiale</td>
</tr>
<tr>
<td>< 2 mdr.</td>
</tr>
</tbody>
</table>

Figur 23 Proces for ansøgning om undtagelse

Anlægsejer kan anmode om undtagelse fra en eller flere af kravene til sine produktionsanlæg.

Anmodningen om undtagelse gives til Energinet og skal indeholde:

a) Identifikation af anlægsejeren eller den fremtidige ejer samt en kontaktperson
b) En beskrivelse af den eller de produktionsanlæg, der anmodes om en undtagelse for
c) En henvisning til de bestemmelser i denne forordning, der anmodes om en undtagelse fra, og en detaljeret beskrivelse af den undtagelse, der anmodes om
d) En detaljeret begrundelse understøttet af relevante bilag og en cost-benefit-analyse, jf. kravene i forordningens artikel 39
e) Dokumentation for, at den undtagelse, der anmodes om, ikke har nogen negativ virkning på den grænseovergående handel.

Efter at Energinet har foretaget en vurdering sendes ansøgning og vurdering til Forsyningstilsynet for deres afgørelse.

I en af følgende situationer hvor kravene ikke længere kan overholdes, kan anlægsejer blive tildelt en begrænset driftstiladelse fra Energinet:

- Anlægget midlertidigt er ved at blive ændret væsentligt.
- Anlægget midlertidigt har mistet kapacitet.
- Dele af udstyret fejler.

Se afsnit 5.7.
Register over undtagelser
Forsyningstilsynet fører et register over alle undtagelser, de har indrømmet eller afslået, og fremsender et ajourført og konsolideret register til Agenturet for Samarbejde mellem Energi­regulerings­myndigheder (ACER) mindst hver sjette måned, med kopi til ENTSO-E.

Registret skal navnlig indeholde:
 a) det eller de krav, der er indrømmet eller afvist undtagelse fra
 b) undtagelsens indhold
 c) begrundelsen for at indrømme eller afvise undtagelsen
 d) konsekvenserne af at indrømme undtagelsen.

Overvågning af undtagelser
Agenturet overvåger undtagelsesproceduren, Forsyningstilsynet sørger for at agenturet modtager alle de nødvendige oplysninger.

Agenturet og Kommissionen kan udstede en begrundet henstilling til en regulerende myndighed om at tilbagekalde en undtagelse under henvisning til manglende berettigelse.
8. Bilagsliste

1. VEJLEDNING ION MIDLERTIDIG DRIFTSTILLADELSE – INTERIM OPERATIONAL NOTIFICATION (ION)